
Data Management between Relationalized Data and Semantic Web Data

Kyawt Kyawt San, Khin Nweni Htun
University of Computer Studies,Yangon

kyawtkyawts@gmail.com,knntun@gmail.com

Abstract

The RDF (Resource Description Framework) model
has attracted the attention of the database community and
many researchers have proposed different solutions to
store and query RDF data efficiently. This paper
proposes a framework for manipulating RDF data store
and proposes a Data mapping algorithm. This paper also
presents an approach to relationalize RDF data with the
querying power of RDBMS and manipulate RDF data
store using SPARQL/UPDATE. Existing approaches
generally lack of focusing on updating RDF data store.
We will show that despite its simple light-weight
architecture, our system is able to outperform
simultaneously in both retrieving relationalized RDF data
and managing RDF data store in accordance with
relationalized data.

1. Introduction

The Semantic Web is an effort by the W3C to enable

integration and sharing of data across different
applications and organizations. One area in which the
Semantic Web community differs from the relational
database community is in its choice of data model. The
Semantic Web data model, called the “Resource
Description Framework”, or RDF, is a language for
representing information about resources in the World
Wide Web. RDF describes a particular resource using a
set of RDF statements of the form (subject, predicate,
object) triples, also known as (subject, property, value).
The subject is the resource, the predicate is the
characteristic being described, and the object is the value
for that characteristic. These triples can then be stored in a
relational database with a three-column schema. One of
the clear advantages of the RDF data model is its schema-
free structure in comparison to the entity-relationship
model where the entities, their attributes and relationships
to other entities are strictly defined. The storage of course
can be just a file in any of the existing notations:
RDF/XML, N-triples, Turtle, or Notation3 (N3).
However, big amounts of data obviously require a
database-based solution such as faster processing, ability
to access needed part of data. At present, the processing
of RDF/RDFS documents as databases is not efficient due
to the lack of data synchronization between two data
store: RDF data store and its relationalized data. Besides,
query processing, optimization technologies and other
important data management facilities such as concurrency
control and recovery control which are commonly found
in a Relational DBMS are not available in an RDF engine.

Storing RDF data in a relational database requires an
appropriate table design. There are attempts to store

RDF/RDFS documents in relational databases such as
Jena2 [22], Sesame [5], Column-Store [18], and SW-
Store [1]. These solutions generally center on a giant
triples table, containing one row for each statement. This
paper will combine the strengths and weaknesses of the
above-mentioned research results to develop a data
management system for RDF data store.

The key contributions of the paper are:
• An application-independent data mapping algorithm

for storing RDF data in relational format.
• A framework for data management between RDF data

store and Relationalized data store.

2. Related Work

R2D[15], a relational wrapper for RDF Data Stores,
which aims to transform, at run-time, semi-structured
RDF data into an equivalent normalized relational
schema, thereby bridging the gap between RDF and
RDBMS concepts and making the abundance of relational
tools currently in the market available to the RDF Stores.
Samizdat RDF Store [4], is an on-demand translation of
RDF queries that allows mapping any relational data
structure to RDF model, and perform queries over a
combination of mapped relational data and arbitrary RDF
triples with a performance comparable to that of relational
systems.

Transformation engine [21] takes a different approach.
In order to easily manipulate the database, RDF/RDFS
documents are transformed into relational database format
so that relational languages, data management and
business intelligence facilities which are readily available
can be exploited. A conceptual meta schema that
describes RDF/RDFS documents and the corresponding
meta table are presented together with illustrated
examples. ONTOACCESS[3] that adds ontology-based
write access to relational data. ONTOACCESS consists
of the update-aware RDB to RDF mapping language
R3M and algorithms for translating SPARQL/Update
operations to SQL. BGPtoSQL[6], a basic graph pattern
translation algorithm, that translates a basic graph pattern
to its SQL-equivalent based on BGPtoSQL. In [7], an
effective method to translate a complete SPARQL query
into a single SQL is proposed, so that the generated SQL
can be directly embedded as a sub-query into other SQL
queries.

Sesame[5], an architecture for efficient storage and
expressive querying of large quantities of metadata in
RDF and RDF Schema. Sesame's design and
implementation are independent from any specific storage
device. Thus, Sesame can be deployed on top of a variety
of storage devices, such as relational databases, triple

stores, or object-oriented databases, without having to
change the query engine or other functional modules.

With regards to implementation, query languages such
as SQL and SPARQL try to push as much of the
functionality as possible to underlying tables storing RDF
data. Our approach for implementing the relationalized
RDF table function is somewhat similar. However, it is
tightly integrated with the SQL engine and with the
SPARQL/UPDATE function in SPARQL engine to be
able to propagating updates to relational data store to
maintain data synchronization between two data store in
addition to the typical relationalizing approaches.

The remainder of this paper is organized as follows.
The RDF data Model is presented in Section 3. In Section
4, propose a data mapping algorithm and introduce the
framework for data management between RDF and RDB
and. Section 5 concludes this paper with an outlook on
future work.

3. RDF Data Model

An RDF model is also referred to as RDF graph,

where each triple forms a <property> edge that connects
the <subject> node to the <object> node. It is based on
the following rules:

1. A Resource is anything that can have a URI (e.g.
all Web pages, all Web images, all files accessible
through ftp, etc.) http://www.ucsy.edu.mm/conferences/

2. A Property has a name and describes some
relationship (e.g. Creator, Title, Subject, etc.)

The RDF data represented as a collection of <subject,
property, object> triples, can easily be stored in a
relational database. For example, the RDF classes and the
triple instances are shown in Figure 1(a) and (b)
respectively.

 ChairpersonOf

 ReviewerOf

 EnrolledAt

Figure.1 (a). RDF data for Reviewer Model

Figure.1(b). RDF data for Reviewer Model with

Triple Instances

RDF tables are physically storing in a wider, flattened
representation more similar to traditional relational
schema. This flattened property table representation will
require many fewer joins to access, since self-joins on the
subject column can be eliminated. One can use standard
query rewriting techniques to translate queries over the
RDF triple store to queries over the flattened
representation. In this paper, we adopt BGPtoSQL[6].

3.1 Simple Protocol And RDF Query Language (

SPARQL)

SPARQL is the current W3C recommendation for
querying RDF data. It is based on matching graph
patterns against RDF graphs. A simple query can use
SPARQL by obeying the some of the rules shown below:
PREFIX: Namespace definition
SELECT: constrains the output format (all obtained
values for the variable ? name will be returned as a table)
WHERE: the query, as a graph pattern.
Variables: Start with ? or $

Example 3.1.

01SELECT ?name ?birthcountry ?number ?country
02 WHERE {
03 ?someone rdf:type :Person .
04 ?someone :name ?name .
05 ?someone :birthcountry ?birthcountry .
06 OPTIONAL {?someone :ssn ?number}
07 OPTIONAL {
08 ?someone :passportno ?number .
09 OPTIONAL { ?number :visacountry ?country }
10 }
11 }

In this example, WHERE clause contains both
non-optional and optional parts. The non-optional part is
the basic graph pattern defined with three triple patterns
in lines 03-05. The basic graph pattern searches for the
instances of class Person which have a name and a
country of birth. The non-optional part must match for the
query to succeed. Therefore, variables ?someone, ?name,
and ?birthcountry must be bound.

The optional part includes three OPTIONAL
clauses and does not have to match for the query to
succeed.

3.2 Relationalizing RDF Data

Although there have been non-relational DBMS

proposals for storing RDF data, the majority of RDF data
storage solutions use relational DBMSs, such as Jena,
Sesame, 3store. These solutions generally center on a
giant triples table, containing one row for each statement.

RDF documents and RDF schemata can be considered
at three different levels of abstraction:

i. at the syntactic level they are XML documents;
ii. at the structure level they consist of a set of RDF

triples;

Subject Property Object
ICCA2011 Rdf:type Conference
John Age 24
John rdf:type Student
Mary rdf:type Faculty
Mary Chairpersonof ICCA2011

Age Person

Reviewer

Student Faculty
University

Conferenc
e

Literal:(xsd:int)

iii. at the semantic level they constitute one or more
graphs with partially predefined semantics.
In this paper, we work at the structure level. Querying

at this level means that any RDF model can be interpreted
only as a set of triples, including those elements which
have been given special semantics in RDF Schema. There
are a number of architectural patterns that may be applied
when developing a service for RDF-to-Relational data
mapping. In this paper, we use a single table Triples
(subject,predicate,object) to store RDF triples, such that
each triple is naturally mapped to one row of the table.
This triple store scheme, although not as efficient as some
other storage schemas, is the best for our presentation
purposes due to its simplicity and application
independence.

For example, the RDF triples table for a small library
dataset is shown in Table 1.

Table.1. Some sample RDF Triples

Subj. Prop. Obj.

ID1 type BookType
ID1 title “Semantic Services”
ID1 author “H.Peter”
ID1 copyright “2005”
ID2 type CDType
ID2 title “IELTS”
ID2 artist “Judith Ash”
ID2 copyright 2003
ID2 Language “English”
ID3 type BookType
ID3 Title Java
ID3 Language English
ID4 Type DVDType
ID4 Title Matlab
ID5 Type CDType
ID5 Title “Office2003”
ID5 Copyright 2002

4. Architecture of Our Proposed Data

Management System

Figure.2. The architecture for relationalizing and

manipulating RDF store

The architecture of a common RDF-to-Relational data
mapping is shown in Figure 2.

4.1 Mapping Strategies for RDF

There are a number of architectural patterns that may

be applied when developing a service for RDF-to-
Relational data mapping. One such architectural pattern,
used in this paper is Parser, which takes an RDF
document as input and generates a set of RDF triples,
each one consisting of a subject, predicate and object. The
implementation of a parser may vary depending on the
specific serialization format of an RDF document, such as
the XML or N-Triples formats. Mapper is responsible for
converting RDF triples into relational tuples that can be
inserted into database tables. This component of the
architecture is initialized with sufficient information about
the database schema so that it can determine which table a
triple should be inserted into and which columns the
subject, predicate, and object belong to.

4.1.1 Proposed Data Mapping Algorithm

Our system resolve the conflict between the RDF data

model and the target relational data model by proposing a
mapping data mapping, is used to store RDF triples into
relational tuples and insert them into the database.

A data mapping algorithm proposed in this paper is
application independent.

01 Algorithm Data Mapping
02 Input: RDF Dataset D
03 Output: Dataset populated with relational tuples
04 Begin
05 Let RDFTriple’ (sub, pred, obj) be a temp table
06 Parse D and load triples into RDFTriples’ (sub, pred,

obj)
07 For each resource in the RDFTriple’
08 Insert into RDFResource(resource_id, URI) � select

sub from RDFTriple (sub, pred, obj)
09 Insert into RDFPredicate(rdf_pred_id, URI) � select

pred from RDFTriple (sub, pred, obj)
10 Insert into RDFValuee(rdf_value_id, value) � select

obj from RDFTriple (sub, pred, obj)
11 End For
12 Insert into RDFTriple � select sub_id, pred_id,

obj_id from RDFResource, RDFPredicate,
RDFValue

13 Delete all tuples from RDFTriple’
14 End Algorithm

Figure.3. Algorithm Data Mapping

4.2 Querying RDF Data Store

A number of query languages have been proposed and
implemented that regard RDF documents as sets of such
triples, and that allow querying such a triple set in various
ways. The SPARQL Query Language is a W3C
Candidate Recommendation for querying RDF, and as

such is fast becoming the standard query language for this
purpose.

Efficiently querying RDF data is being an important
factor in applying Semantic Web technologies to real-
world applications. In this context, many efforts have
been made to store and query RDF data in relational
database using particular schemas.

4.3 Updating RDF Data Store

In order to make the Semantic Web real we need the

infrastructure to store, query and update information
adhering to the RDF paradigm. Such infrastructure can be
developed from scratch or benefit from developments and
experiences made in other science & technology realms
such as within the database domain. For querying RDF
data the WorldWideWeb Consortium released a Working
Draft for the SPARQL query language. SPARQL/Update
is a language to express updates to an RDF store. The
approach is based on pushing as much work into the RDF
store as possible in order to profit most from the
SPARQL/UPDATE query techniques SPARQL/Update
provides the following facilities:

• Insert new triples to an RDF graph.
• Delete triples from an RDF graph.
• Perform a group of update operations as a single

action.
• Create a new RDF Graph to a Graph Store.
• Delete an RDF graph from a Graph Store.

The proposed version of SPARQL/Update consists of
three update operations: (1)INSERT DATA (Listing 1) to
insert new triples into an RDF graph; (2) DELETE DATA
(Listing 2) to remove known triples from a graph; and (3)
MODIFY (Listing 3) to delete and/or insert data based on
triple templates that are matched against a triple pattern in
a shared WHERE clause. The MODIFY operation
basically corresponds to two SPARQL CONSTRUCT
queries (with the same WHERE clause) where the
resulting RDF triples get removed from and added to the
data.

4.4 Generating SQL Queries for Basic Graph
Patterns

We adopt an Algorithm BGPtoSQL[6], is a
primitive for translating a basic graph pattern into an

equivalent SQL query, such that the SQL query retrieves
RDF subgraphs matching the graph pattern from the triple
store.
A basic graph pattern (BGP) is a set of triple patterns
written as a sequence of triple patterns (separated by a
period if necessary. A BGP should be understood as the
conjunction of its triple patterns.
The SQL query result is a relation whose schema is the
set of variables found in the graph pattern.

SPARQL is based on matching graph patterns against
RDF graphs. In addition, SPARQL allows the
specification of triple and graph patterns to be matched
over RDF graphs.

The algorithm treats blank nodes as a special case of a
variable with the scope of a basic graph pattern.
Therefore, the algorithm substitutes every blank node
label in the input graph pattern BGP with a unique
variable, such that multiple occurrences of the same blank
node are substituted by the same variable. The uniqueness
property should hold for the scope of a SPARQL query to
ensure that blank nodes in one basic graph pattern will not
coincide with blank nodes in another pattern. All distinct
variables in BGP are projected in the SELECT clause,
such that a predicate/subject/object variable is represented
by the corresponding column of the Triples table.

 We would like to apply this algorithm for its
efficiency and scalability.

Definition: Basic Graph Pattern Model

A basic graph pattern is modeled as a directed
graph BGP = (N;E), where N is a set of nodes
representing subjects and objects, and E is a set of edges
representing predicates. Each edge is directed from a
subject node to an object node. Each node is labeled
(attribute label) with a variable name, a URI, a blank
node, or a literal, and each edge is labeled with a variable
name or a URI.
The SPARQL query in Example 1.1 has four basic graph
patterns:

Figure.4. Basic graph patterns for Example 3.1

INSERT DATA { triples
}

MODIFY
DELETE {
 Template
}
INSERT {
 Template
}
MODIFY {
Pattern
}

DELETE DATA { triples
}

Listing1: INSERT
DATA

Listing2: DELETE
DATA

Listing3: MODIFY

5. Conclusions

The paper proposed an application-independent data
mapping algorithm to store RDF data in relationalized
format. Specifically, a framework for data management
between RDF data store and relationalized data store is
introduced with the ability to maintain data consistency of
these two data store. Wide adoption of the Semantic Web
requires interoperability between relational databases and
RDF applications. In this work, we designed an
Relationalized RDF data management system for storing
and querying RDF data. The described approach allows
taking advantage of RDBMS transactions and the costs of
migration from relational data model to RDF.

References

[1]A.J.Daniel, AdamMarcus, M.R.Samuel, H. Kate, “SW-Store:
a vertically partitioned DBMS for SemanticWeb data
management” The VLDB Journal (2009).
[2] “An Effective SPARQL Support over Relational Databases”,
Springer-Verlag Berlin Heidelberg 2008.
 [3]Artem Chebotko, Xubo Fei, Cui Lin, Shiyong Lu, and
Farshad Fotouhi , “Storing and Querying Scientific Workflow
Provenance Metadata Using an RDBMS”, Third IEEE
International Conference on e-Science and Grid Computing.
[4] B. Dmitry, “On-demand RDF to Relational Query
Translation in Samizdat RDF Store”.
[5]B. Jeen, K.Arjohn, H.V.Frank, “Sesame: A Generic
Architecture for Storing and Querying RDF and RDF Schema”.
[6] C. Artem, Shiyong Lu, Hasan M. Jamil and Farshad Fotouhi,
“Semantics Preserving SPARQL-to-SQL Query Translation for
Optional Graph Patterns”, Technical Report TR-DB-052006-
CLJF, May 2006. Revised November 2006.
[7]Eric Prud'hommeaux, Alexandre Bertails,“A Mapping of
SPARQL Onto Conventional SQL”, World Wide Web
Consortium (W3C), http://www.w3.org/
 [8]Eugene Inseok Chong, Souripriya Das , George Eadon
, Jagannathan Srinivasan, “An efficient SQL- based RDF
Querying Scheme”, Proceedings of the 31st VLDB Conference,
2005.
[9]F. BANCILHON and N. SPYRATOS, “Update Semantics
of Relational Views “,
Franc¸ois Goasdou´e, Konstantinos, L.J. Karanasos, M. Ioana,
“Materialized View-Based Processing of RDF Queries”.
[10]H. Alice, B. Jeen, and S. Heiner, “RDF Storage and
Retrieval Systems”.
[11]H. Denis, “Semantic Web and RDF:Introduction”. INRIA,
France
[12]Jing Lu, FengCao, LiMa, YongYu, YuePan
 K. Artem, “Storing and Querying RDF Data”, Engineering
(ITKS544), Spring 2009, University of Jyväskylä.
[13]M. Andrew, “Understanding SPARQL”,
(matthews.andrew@gmail.com)
[14]Matthias Hert, Gerald Reif, Harald C. Gall, “Updating
Relational Data Via SPARQL/UPDATE”.
[15]R. Sunitha, G. Anubha, K. Latifur, S. Steven, Bhavani, “A
Framework for the Relational Transformation of RDF Data”.
 [16]RDF Primer, W3C Recommendation 10 February 2004,
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
[17]RDF Vocabulary Description Language 1.0: RDF Schema,
W3C Recommendation 10 February 2004
[18]S. Lefteris, G.Romulo, K.Martin, Column-Store Support for
RDF Data Management: not all swans are white”.
[19]S. Sherif and Ghazi Al-Naymat, “Relational Processing of
RDF Queries: A Survey “.

[20] SPARQL Update, “A language for updating RDF graphs”,
W3C Member Submission 15 July
2008,http://www.w3.org/Submission/2008/SUBM-SPARQL-
Update-20080715/.
[21]T. Wajee and C. Suphamit, “A Transformation from RDF
Documents and Schemas to Relational Databases”.
[22]W. Kevin, S.Craig, K.Harumi, R Dave, “Efficient RDF
Storage and Retrieval in Jena2”.

